最新公告
  • 新用户注册,免费领取 1天体验会员!O(∩_∩)O 立即加入
  • Java分布式id生成 雪花算法(SnowFlake)_每日编程

    当前位置:云点网 > 每日编程 > Java知识 > Java分布式id生成 雪花算法(SnowFlake)_每日编程
    分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

    算法原理

    SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

    Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网

    1. 1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。
    2. 41bit-时间戳,用来记录时间戳,毫秒级。
      – 41位可以表示Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网个数字,
      – 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网,减1是因为可表示的数值范围是从0开始算的,而不是1。
      – 也就是说41位可以表示Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网个毫秒的值,转化成单位年则是Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网
    3. 10bit-工作机器id,用来记录工作机器id。
      – 可以部署在Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网个节点,包括5位datacenterId和5位workerId
      – 5位(bit)可以表示的最大正整数是Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网,即可以用0、1、2、3、….31这32个数字,来表示不同的datecenterId或workerId
    4. 12bit-序列号,序列号,用来记录同毫秒内产生的不同id。
      – 12位(bit)可以表示的最大正整数是Java分布式id生成 雪花算法(SnowFlake)_每日编程-云点网,即可以用0、1、2、3、….4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。

    由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

    SnowFlake可以保证:

    1. 所有生成的id按时间趋势递增
    2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

    算法实现(Java)

    Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

    public class IdWorker{
    
        //下面两个每个5位,加起来就是10位的工作机器id
        private long workerId;    //工作id
        private long datacenterId;   //数据id
        //12位的序列号
        private long sequence;
    
        public IdWorker(long workerId, long datacenterId, long sequence){
            // sanity check for workerId
            if (workerId > maxWorkerId || workerId < 0) {
                throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
            }
            if (datacenterId > maxDatacenterId || datacenterId < 0) {
                throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
            }
            System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                    timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
    
            this.workerId = workerId;
            this.datacenterId = datacenterId;
            this.sequence = sequence;
        }
    
        //初始时间戳
        private long twepoch = 1288834974657L;
    
        //长度为5位
        private long workerIdBits = 5L;
        private long datacenterIdBits = 5L;
        //最大值
        private long maxWorkerId = -1L ^ (-1L << workerIdBits);
        private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
        //序列号id长度
        private long sequenceBits = 12L;
        //序列号最大值
        private long sequenceMask = -1L ^ (-1L << sequenceBits);
        
        //工作id需要左移的位数,12位
        private long workerIdShift = sequenceBits;
       //数据id需要左移位数 12+5=17位
        private long datacenterIdShift = sequenceBits + workerIdBits;
        //时间戳需要左移位数 12+5+5=22位
        private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
        
        //上次时间戳,初始值为负数
        private long lastTimestamp = -1L;
    
        public long getWorkerId(){
            return workerId;
        }
    
        public long getDatacenterId(){
            return datacenterId;
        }
    
        public long getTimestamp(){
            return System.currentTimeMillis();
        }
    
         //下一个ID生成算法
        public synchronized long nextId() {
            long timestamp = timeGen();
    
            //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
            if (timestamp < lastTimestamp) {
                System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
                throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                        lastTimestamp - timestamp));
            }
    
            //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
            if (lastTimestamp == timestamp) {
                sequence = (sequence + 1) & sequenceMask;
                if (sequence == 0) {
                    timestamp = tilNextMillis(lastTimestamp);
                }
            } else {
                sequence = 0;
            }
            
            //将上次时间戳值刷新
            lastTimestamp = timestamp;
    
            /**
              * 返回结果:
              * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
              * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
              * (workerId << workerIdShift) 表示将工作id左移相应位数
              * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
              * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
            */
            return ((timestamp - twepoch) << timestampLeftShift) |
                    (datacenterId << datacenterIdShift) |
                    (workerId << workerIdShift) |
                    sequence;
        }
    
        //获取时间戳,并与上次时间戳比较
        private long tilNextMillis(long lastTimestamp) {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp) {
                timestamp = timeGen();
            }
            return timestamp;
        }
    
        //获取系统时间戳
        private long timeGen(){
            return System.currentTimeMillis();
        }
    
        //---------------测试---------------
        public static void main(String[] args) {
            IdWorker worker = new IdWorker(1,1,1);
            for (int i = 0; i < 30; i++) {
                System.out.println(worker.nextId());
            }
        }
    
    }
    

     

    1. 本站所有资源来源于用户上传和网络,因此不包含技术服务请大家谅解!如有侵权请邮件联系客服!
    2. 本站不保证所提供下载的资源的准确性、安全性和完整性,资源仅供下载学习之用!如有链接无法下载、失效或广告,请联系客服处理,有奖励!
    3. 您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容资源!如用于商业或者非法用途,与本站无关,一切后果请用户自负!
    4. 如果您也有好的资源或教程,您可以投稿发布,成功分享后有站币奖励和额外收入!

    云点网 » Java分布式id生成 雪花算法(SnowFlake)_每日编程

    发表评论

    正版保障

    终身会员

    推广奖励

    售后支持

    欢迎您光顾,建议使用 QQ 登录
    喜欢我嘛?喜欢就按“ctrl+D”收藏我吧!♡